

Viral Hepatitis: The Search for a Cure

Michael J. Sofia, Chief Scientific Officer Arbutus Biopharma, Inc.

Forms of Viral Hepatitis

Five forms of viral hepatitis: Hepatitis A, B, C, D, E

- Hepatitis A
 - Acute self-limiting infection
 - Contracted by eating contaminated foods
 - Rarely leads to permanent liver damage
- Hepatitis B
 - Acute infection can lead to chronic infection
 - Contracted by vertical infection or from contaminated blood sources
 - Lead to liver damage and HCC
- Hepatitis C
 - Acute infection can lead to chronic infection
 - Contracted from contaminated blood sources
 - Lead to liver damage and HCC

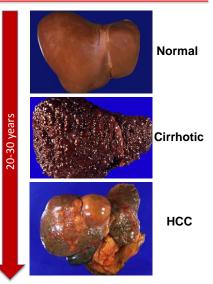
Hepatitis D

- Occurs only in conjunction with HBV
- Leads to a more sever form of HBV-related liver disease

Hepatitis E

- Typically only an acute self-limiting infection problem in immune compromised individuals
- Fecal to oral transmission route

Chronic Viral Hepatitis: HBV & HCV


- Every third person on the planet shows evidence of infection with viral hepatitis
- · 500 million people are chronically infected with hepatitis B or C
- 1 million die every year: 1 every 30 seconds
- Globally 57% of cirrhosis and 78% of primary liver cancer are due to these 2 diseases
- · 80-90% of liver transplants associated with HBV & HCV infection
- The majority of those chronically infected are undiagnosed hepatitis B and C are often asymptomatic for years
- The sheer size of the problem is intimidating as many people are chronically infected with viral hepatitis in 2 African countries as there are people living with HIV/AIDS in the whole world

Summary of Epidemiology and Natural History of Chronic Viral Hepatitis

• HCV

- 170-200 Million infected
- 20% lifetime risk of cirrhosis
- 4% lifetime risk of HCC
- Leading cause of liver transplant in North America and Europe
- No vaccine available
- HBV
 - 2 Billion ever infected
 - ~400 Million infected now
 - 1 Million die each year of HCC or cirrhosis
 - 25% life time risk for each HBsAg+ patient of HCC or cirrhosis
 - Second most common carcinogen (liver cancer) after cigarettes
 - Preventive vaccine available
- Linked to the co-existence of multiple comorbidities

21

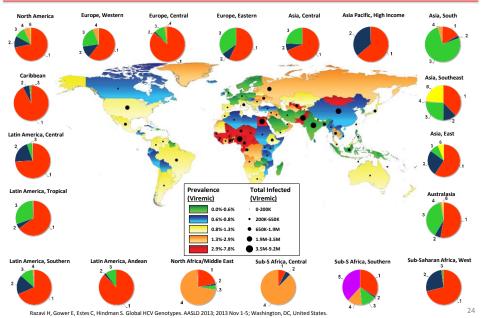
ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

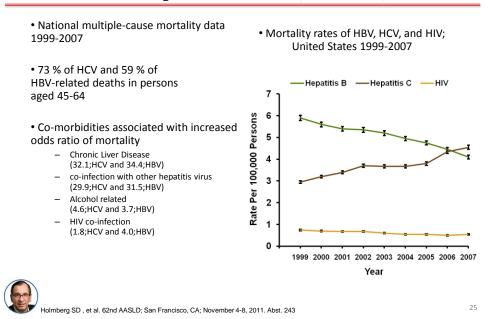
Which chronic viral disease has the highest worldwide prevalence rate?

- HIV
- HCV
- HBV
- None of the above

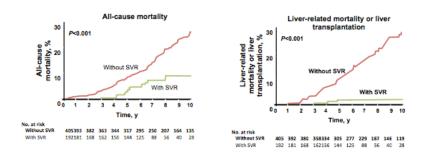
HBV vs HIV vs HCV

	HIV	HCV	НВУ	
U.S. Prevalence	1 million	3 million	1.3–3 million	
Worldwide Prevalence	35 million	160 million	350 million	
Percent Diagnosed in U.S.	80%	50%	30%	
Percent Diagnosed Who Are Treated in U.S.	70%	33%	6-10%	
Nature	RNA retrovirus	RNA virus	DNA virus	
Virions Produced per Day	10 ¹⁰	10 ¹²	10 ¹³	
Enzyme Targets for Therapy	Multiple	Multiple	One	
Curable?	Unclear; lifelong suppression with HAART therapy	Yes	Unclear; lifelong suppression with Nuc therapy	
Why Easy / Difficult?	Proviral DNA integrated into host genome, difficult to eliminate	RNA virus existing in the host cytoplasm; can eradicate with cocktail of small molecules DAAs	cccDNA inside the nucleus, also integrated into host genome, difficult to eliminate	
Need Immune Component in Therapeutic Regimen for Cure?	Maybe	No	Maybe	
Transmission	Infected blood/needles, sex	Infected blood/needles, sex	Infected blood/needles, sex	
Vertical Transmission	Yes	No	Yes	
Vaccine	No	No	Yes	
2115 U.S. Sales	\$9.3 billion	\$13.3 billion	\$700 million	

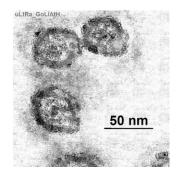

23


Can it become a disease of the past?

HCV: Prevalence, Total Infected, Genotype



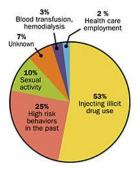
Growing Burden of Mortality Associated with Viral Hepatitis in the US (1999-2007)


SVR is Associated with Reduced All-Cause Mortality Among HCV-infected Persons

- 530 adults in Europe prospectively followed for median 8.4 years after HCV treatment
- 192 (36%) achieved SVR

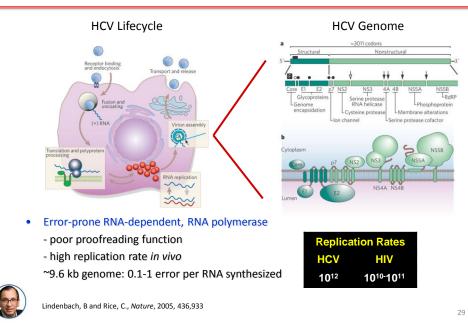
Van der Meer, et al. JAMA 2012:308:2584-2593.

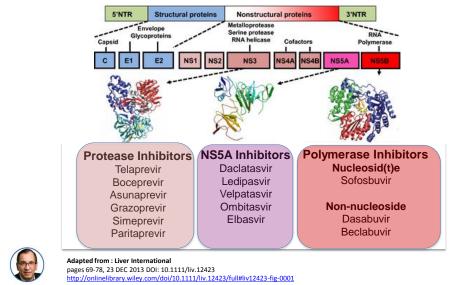
Hepatitis C Virus: Morphology and Characteristics


- Nucleic Acid: 9.6 kb ssRNA(+)
- Classification: Flaviviridae, Hepacivirus
- · Genotypes: 1 to 6
- Enveloped
- No known viral reservoir
- Does not integrate into host genome

High Risk of Infection

- Clotting factor treatment prior to 1987
- Injection drug use
- Injection treatments prior to universal precautions
- Long-term hemodialysis

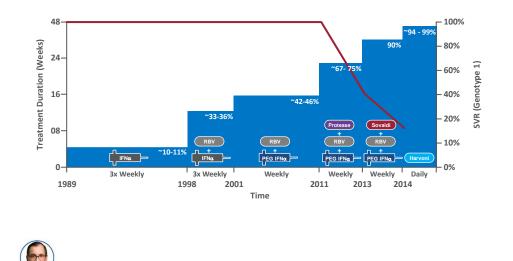




CDC, MMWR 1998; 47:4

The Hepatitis C Virus

Key Target Areas of Drug Discovery Focus and Key Drugs


ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

What was the first IFN-free HCV cure therapy to be approved by the US FDA?

- Harvoni[®] (sofosbuvir + ledipasvir)
- Viekira Pak[®] (ombitasvir + paritaprevir + dasabuvir +ritonavir)
- Zepatier[®] (grazoprevir + elbasvir)
- Sovaldi® (sofosbuvir) + RBV

FDA Approved IFN-Free HCV Cure Drug Combinations

The History of HCV Therapy Development

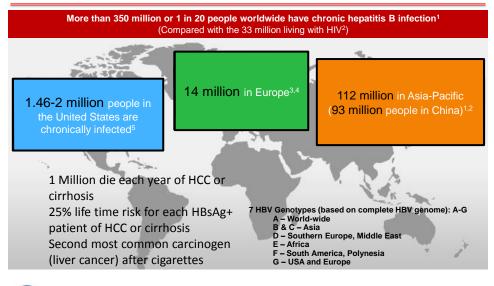
HCV Curative Therapy Today

- IFN-Free curative therapies are a reality
- Simple oral fixed-dose and short duration therapies
- >95% cure rates across multiple genotypes
- High cure rates in difficult to treat patient populations
- Patient access is the issue
- HCV can become a rare disease in the future


34 34

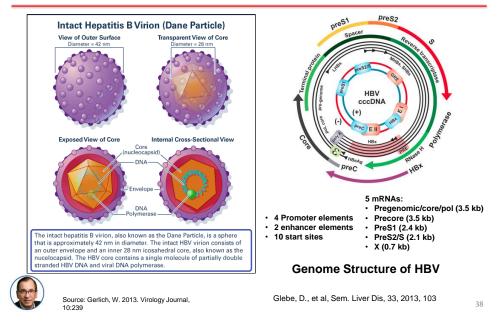
Is there a path to a cure?

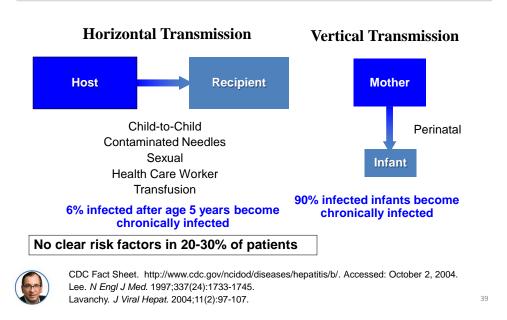
Hepatitis B Virus (HBV)


- Hepadnaviridae member that primarily infects liver cells
- DNA virus
- 100 times more infective than HIV
- Found in blood and body fluids
 - Able to survive in dried blood for longer than 1 week
- Viral reservoir: cccDNA in nucleus of hepatocytes
- Small segments of viral DNA do integrate but do not code for viral proteins

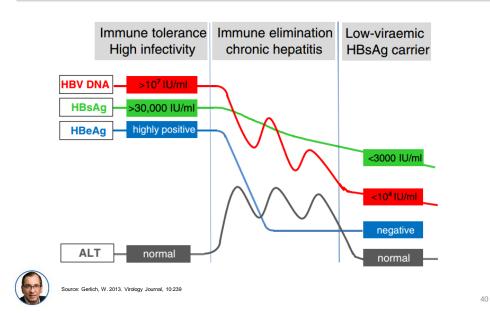
Ott et al. *J Pediatr Health Care.* 1999;13(5):211-216. Ribeiro, et al. *Microbes and Infection.* 2002;4:829-835. MMWR. 2003;52:1-33.

37


Chronic Hepatitis B: By The Numbers



1 WHO. Available at: <u>www.who.im/ctr/disease/hepatitis/en/</u>. 2 Ferlay et al. Globocan 2002, Cancer Incidence, mortality and prevalence worldwide, IARC Press, Lyon 2004. 3 Records of the thematic press conference of the Ministry of Health of the PRC at April 21, 2008, from the webste of the Ministry of Health of the People's Republic of China; 4 Ulmer, T et al. (2007). European orientation towards the better management of hepatitis B in Europe; 5. CDC. Hepatitis B FAQs for Health Professionals. Available at <u>http://www.cdc.gov/hepatitis/HBV/HBV/ag.htm#overview.</u>


The Hepatitis B Virus

Transmission of HBV

Three Phases of Chronic HBV Infection

REVEAL-HBV: Clearance of HBV DNA Reduces Risk of HCC

- REVEAL-HBV study cohort (N = 2946; aged 30-65 yrs)
 - Pts recruited 1991-1992, serum markers evaluated every 6-12 mos until June 30, 2004; HCC rates followed until December 31, 2008
- HBV DNA suppression independently associated with significantly reduced risk of HCC
 - Pts with HBeAg suppression (n = 185) still had high HBV DNA levels and still at high risk of HCC
 - HBsAg suppression not associated with reduced incidence of HCC, but study not powered to detect difference
- Greatest reduction in HCC incidence observed among pts with high baseline HBV DNA (≥ 100,000 copies/mL) who cleared HBV DNA during follow-up
 - HCC incidence highest in pts HBeAg seropositive throughout follow-up

HBV Approved Therapies

Nucleosides/Nucleotides				
Tenofovir Alafenamide	VEMLIDY®	Gilead Sciences	2016	
Tenofovir	VIREAD®	Gilead Sciences	2006	
Telbivudine	TYZEKA™	Idenix/Novartis	2006	
Entecavir	BARACLUDE™	Bristol-Myers Squibb	2005	
Adefovir Dipivoxil	HEPSERA™	Gilead Sciences	2002	
Lamivudine	EPIVIR-HBV®	GlaxoSmithKline	1998	
Interferons				
Peginterferon alfa-2a	PEGASYS®	Roche Laboratories 2005		
Interferon alfa-2b recombinant	INTRON® A	Schering/Merck	1992	

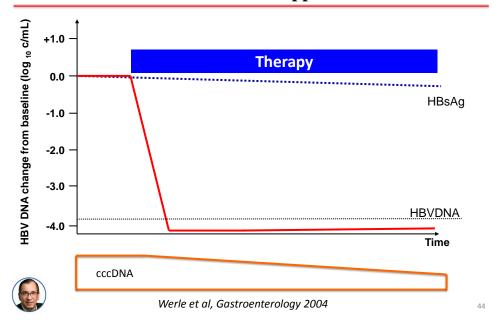
Preferred Therapies – AASLD Guidelines

43

Entecavir ^{1,2}	Tenofovir ³	PEG-IFN α-2a ^{4,5}
n = 354	n = 176	n = 271
67%	76%	25%ª
21%	21%	27%
68%	68%	39%
2%	3.2%	2.9% ^b
n = 325	n = 250	n = 177
90%	93%	63%ª
78%	76%	38%
0.3%	0%	0.6% ^b
	67% 21% 68% 2% n = 325 90% 78%	67% 76% 21% 21% 68% 68% 2% 3.2% n = 325 n = 250 90% 93% 78% 76%

Relative Efficacy of Approved HBV Therapies

Results at 48 weeks


^a HBV DNA < 400 copies/mL; ^b At 72 weeks

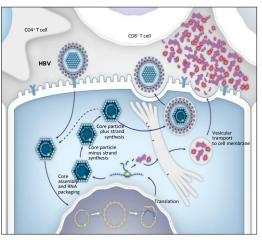
Chang T-T, et al. N Engl J Med 2006;354:1001–10.
 Lai C-L, et al. N Engl J Med 2006;354:1011–20.
 Marcellin P, et al. N Engl J Med 2008;359:2442–55.

Lau GKK, et al. N Engl J Med 2005;352:2682–95.
 Marcellin P, et al. N Engl J Med 2004;351:1206–17.

Long-term Therapy is Required to Maintain Viral Suppression

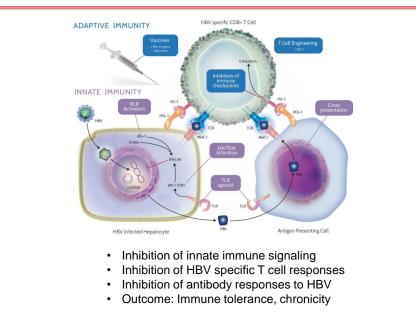
What Does a Cure Look Like?

	Functional Cure	Absolute Cure
Clinical Scenario	As if recovery after acute HBV infection	As if never infected
HBsAg	Negative	Negative
Anti-HBsAg	Positive	Positive
Serum HBV DNA	Not Detected	Not Detected
HBV cccDNA	Detected, but not transcriptionally active	Not Detected
Hepatic integrated HBV DNA	Detected	Not Detected
Current Status	Achievable in a few patients	Not yet achievable



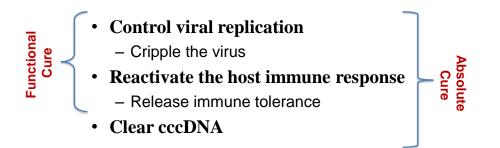
Jiang, et al., DDW, 2016

45

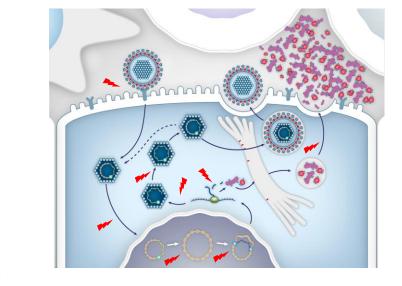

HBV Chronic Infection

- 10¹³ virons produced per day
- Infection is not cytopathic
- Outcome of infection and severity of associated liver disease are determined by nature and magnitude of host immune response

HBV Viral Life Cycle

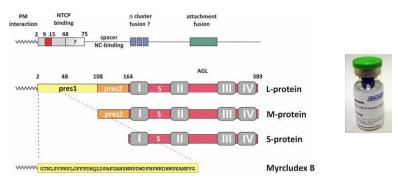


HBV and the Host Immune Response



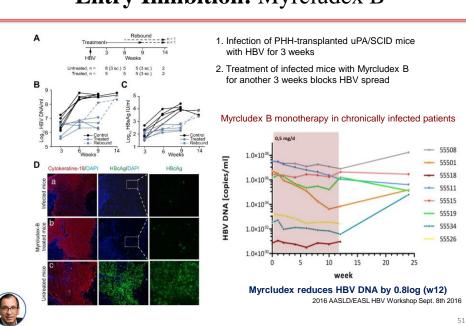
How to Achieve a Cure?

48

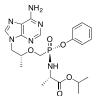


HBV Cure: Potential DAA Drug Targets

HBV Cure: Emerging Strategies


Viral Attachment Inhibition

- Preclinical and Clinical POC
- · Clinical results modest and variable



Entry Inhibition: Myrcludex B

Nucleoside Prodrugs

Liver Targeted Tenofovir Prodrugs

(Tenofovir Alafenamide, TAF)

Launched as Vemlidy®

Phase II Clinical Development

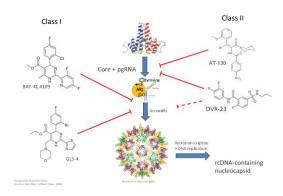
Ë

ĊH₃

ÓН

CMX157

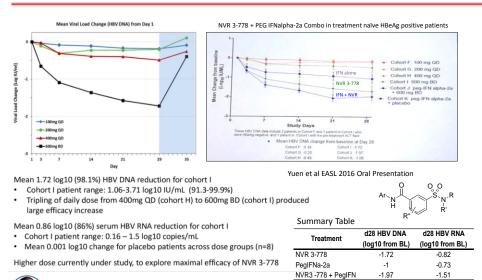
-O(CH₂)₃O(CH₂)₁₅CH₃


Advantages

- Increase drug levels in liver
- Reduce renal and bone toxicity associated with Tenofovir

Inhibition of HBV Capsid Assembly and pgRNA Encapsidation

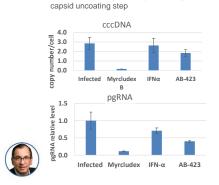
- Hepatitis B virus replication is strictly dependent upon capsid assembly around pregenomic RNA (pgRNA) prior to rcDNA synthesis and subsequent cccDNA synthesis.
- Assembly of HBV nucleocapsid is dependent on ordered folding of the viral capsid protein.
- Interfering with HBV capsid assembly with small molecule inhibitors has been shown to translate into antiviral activity in vitro and in vivo and constitutes a novel mechanism that is distinct from the nucleos(t)ide analogues currently available for clinical use.

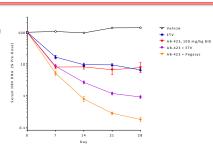


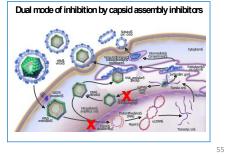
HBV capsid assembly pathway and examples of inhibitors [core protein allosteric modulators (CpAM)]

(NVR 3-778 @ 600 mg BID; Peg-IFN 180 ug/wk)

53

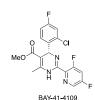

First Clinical POC of Capsid Inhibitors (NVR-3-778)

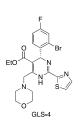




Capsid Assembly Inhibitor AB-423

- In vitro AB-423 showed:
 - additive/synergistic activity in combination with Nucs and RNAi agents
 - potent activity against HBV Nuc^R variants and pan-genotypic activity
 - no significant activity against unrelated viruses
- AB-423 inhibited cccDNA synthesis during *de novo* HBV infection of C3A^{hNTCP} cells
- Data suggests AB-423 has a dual mode of inhibition:
 - Inhibits encapsidation of pgRNA during ongoing infection
 Inhibits cccDNA synthesis presumably *via* inhibition of the

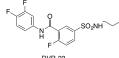




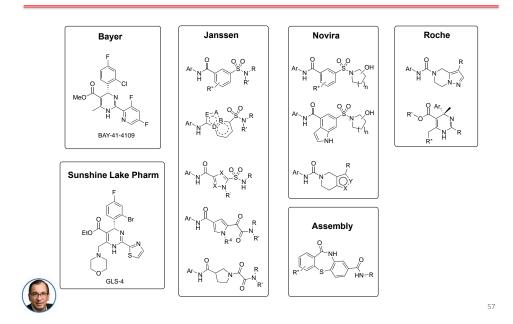
Capsid (Core Protein) Assembly Inhibitors

Class I

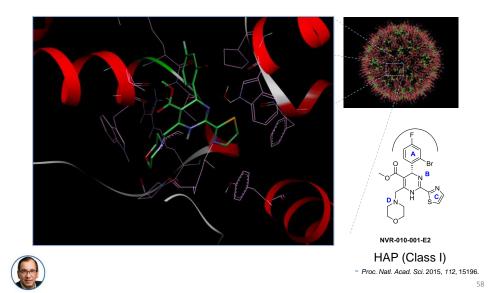

Heteroaryldihydropyrimidine (HAP)



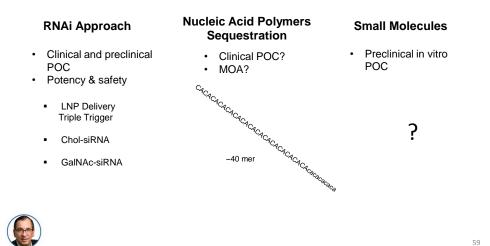
Class II


Propenamides

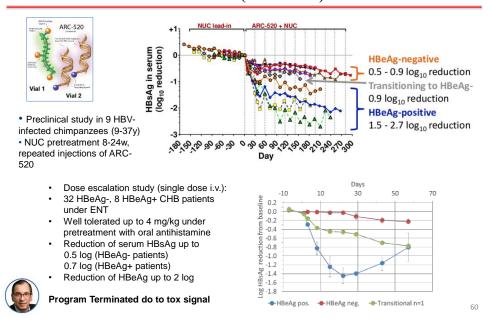
Sulfonylbenzamides



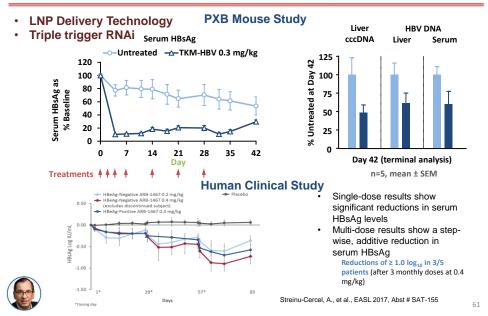
DVR-23


Capsid Assembly Inhibitor Patent Landscape

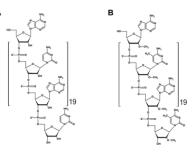
Crystal Structure of Bound Capsid Assembly Inhibitor

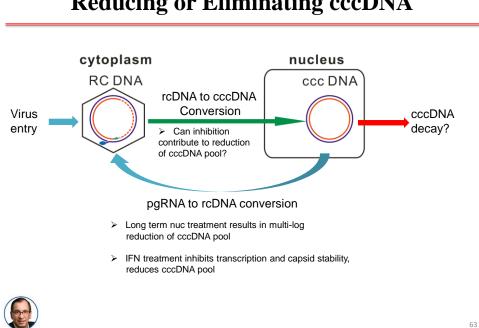


HBV Cure: Emerging Strategies

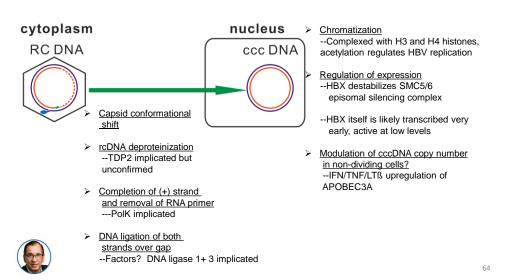

Inhibit HBsAg Production or Secretion


Controlling S-Antigen Production via RNAi (ARC-520)


Controlling S-Antigen Production via RNAi (ARB-1467)

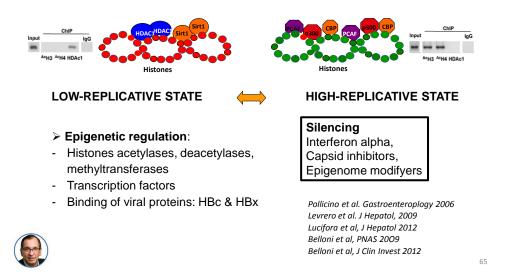

Controlling sAg via Nucleic Acid Polymers (NAPS)

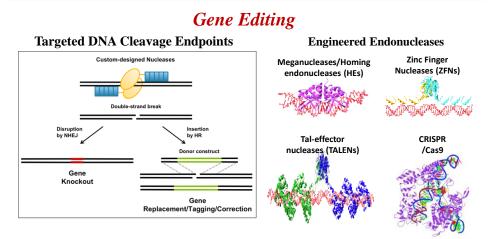
Mono therapy with REP 2139-Ca



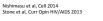
Al-Mahtab M, Bazinet M, Vaillant A (2016) Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immunotherapy in Treatment-Naive Bangladeshi Patients with HBEAg+ Chronic Hepatitis B Infection. PLoS ONE 11(6): e0156667. doi:10.1371/

Reducing or Eliminating cccDNA

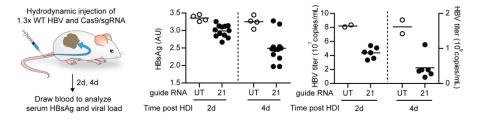

cccDNA Formation and Stability


What We Know and What We Don't Know

Regulating cccDNA Transcription


Epigenetic Control of cccDNA

cccDNA: A Target for Gene Editing

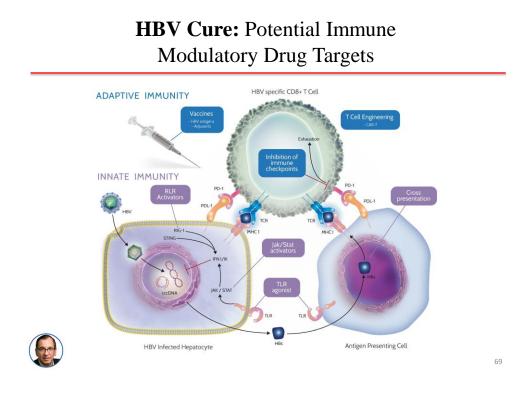


NHEJ – Non-Homologous End-Joining; results in short mutations, insertions and deletions (indels) HR – Homologous Recombination; accompanied by donor DNA, capable to insert / replace sequence

cccDNA: A Target for Gene Editing

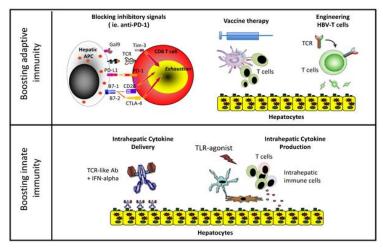
Gene Editing: Targeting HBV with CRISPR/Cas9

- Co-transfection of 1.3x WT HBV and sgRNA-Cas9-2A-mCherry plasmid by HDI in mice, followed by monitoring viral markers in mouse blood
- Total HBV DNA and cccDNA exhibit dramatic, increasing reductions over time


Immunmodulation: Challenges on the Path to a Cure

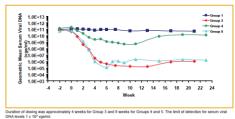
- 1. Heterogeneous host immunity among HBV patients. -what is a clinical biomarker for host immune re-awakening?
- 2. Lack of understanding of the immunological function of viral proteins.

-all inhibitory? or stimulatory?

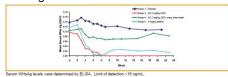


HBV Cure: Emerging Strategies

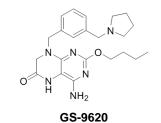
Restoration of Antiviral Immunity



Bertoletti A, Gehring AJ (2013) Immune Therapeutic Strategies in Chronic Hepatitis B Virus Infection: Virus or Inflammation Control?. PLoS Pathog 9(12): e1003784. doi:10.1371/journal.ppat.1003784

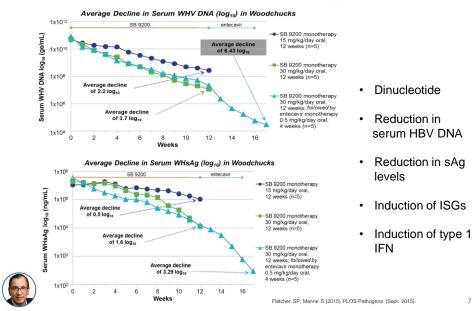

TLR7 Agonist GS-9620

Woodchuck Study



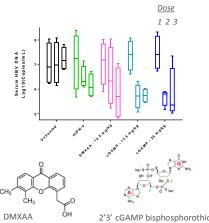
HBsAg Levels

Menne, S, et al., J. Hepatology, 2015, 62, 1237-1245

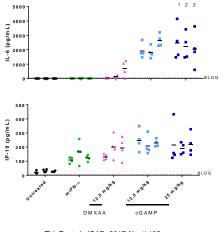

- 5 mg/kg QOD, 4-8 weeks
- Mean Max viral load decline of 6.1 2.9, and 5.8 observed
- sAg levels reduced to undetectable in 100% of animals
- Reduced sAg levels were sustained after cessation of therapy

Human Clinical Study

- Discontinued due to lack of efficacy
- Dose limiting toxicity?

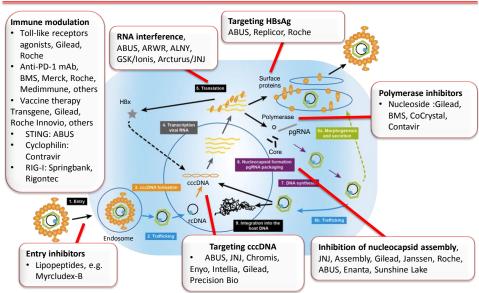

71

RIG-I Agonist: SB9200

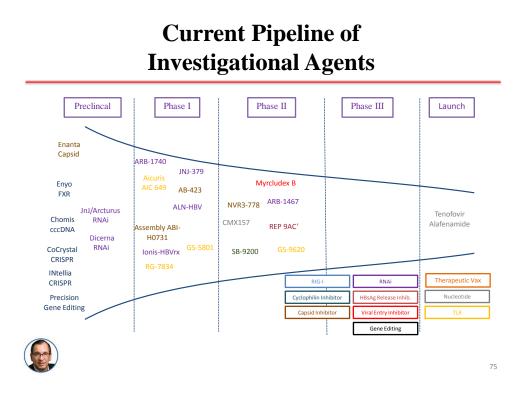

STING Activation Controls HBV Replication and Induces Cytokine Production

- STING expressed in hepatocytes (low level), antigen presenting cells and T cells
- An innate immune adaptor that regulates responses to cytosolic/viral dsDNA

2'3' cGAMP bisphosphorothioate Human/multi-species active

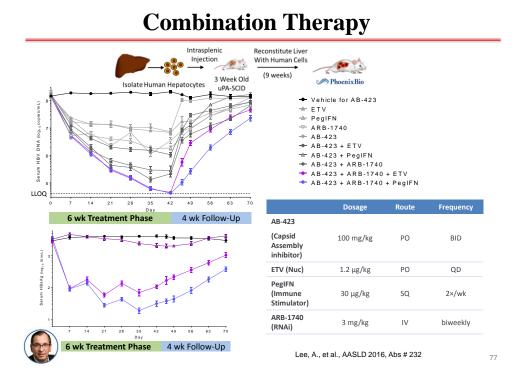


Thi, E. et al., ICAR, 2017 Abs # 135


73

Dose

HBV Cure: The Drug Discovery Landscape


Zoulim F, et al. Antiviral Res 2012;96(2):256–9; HBF Drug Watch, Available at: http://www.hepb.org/professionals/hbf_drug_watch.htm. 74

Combination Therapy

- General belief that no single approach will be sufficient to deliver a cure
- As in HCV and HIV combinations of drugs with different MOA will be the solution
- Which combination will deliver the ultimate "cure" is yet to be determined
- How to assess combinations pre-clinically that may guide clinical studies is developing

Key Challenges in Finding an HBV Cure

- · How to completely control viral replication?
- How to address the virus' ability to control the host immune response?
- · How to eradicate the viral reservoir, cccDNA?
- What is the best combination of MOA?
- Can significant reduction in the duration of therapy be achieved?

79

HBV: Is There a Path to a Cure?

- Increased focus by both academic and industry labs well beyond historic levels
- Many new targets and strategies under investigation
- Increased efforts to understand the virus and how the host immune system responds to the virus
- Combination of drugs with different MOA have the potential to deliver major therapeutic advances

A Cure Yet To Be Realized: HBV

